Poles of Archimedean zeta functions for analytic mappings

نویسندگان

  • E. Leén-Cardenal
  • Willem Veys
  • W. A. Zuniga-Galindo
چکیده

Let f = (f1, . . . , fl) : U → Kl, with K = R or C, be a K-analytic mapping defined on an open set U ⊆ Kn, and let Φ be a smooth function on U with compact support. In this paper, we give a description of the possible poles of the local zeta function attached to (f , Φ) in terms of a log-principalization of the ideal If = (f1, . . . , fl). When f is a non-degenerate mapping, we give an explicit list for the possible poles of ZΦ(s, f) in terms of the equations of the supporting hyperplanes of a Newton polyhedron attached to f . These results extend the corresponding results of Varchenko to the case l ≥ 1 and K = R or C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeta Functions for Analytic Mappings, Log-principalization of Ideals, and Newton Polyhedra

In this paper we provide a geometric description of the possible poles of the Igusa local zeta function ZΦ(s, f) associated to an analytic mapping f = (f1, . . . , fl) : U(⊆ K ) → K, and a locally constant function Φ, with support in U , in terms of a log-principalizaton of the K [x]−ideal If = (f1, . . . , fl). Typically our new method provides a much shorter list of possible poles compared wi...

متن کامل

Igusa Local Zeta Functions of a Class of Hybrid Polynomials

In this paper, we study the Igusa’s local zeta functions of a class of hybrid polynomials with coefficients in a non-archimedean local field of positive characteristic. Such class of hybrid polynomial was first introduced by Hauser in 2003 to study the resolution of singularities in positive characteristic. We prove the rationality of these local zeta functions and describe explicitly their pol...

متن کامل

An Introduction to P -adic and Motivic Zeta Functions and the Monodromy Conjecture

Introduced by Weil, the p-adic zeta function associated to a polynomial f over Zp was systematically studied by Igusa in the non-archimedean wing of his theory of local zeta functions, which also includes archimedean (real and complex) zeta functions [18][19]. The p-adic zeta function is a meromorphic function on the complex plane, and contains information about the number of solutions of the c...

متن کامل

Fixed Point Theorems for Single Valued Mappings Satisfying the Ordered non-Expansive Conditions on Ultrametric and Non-Archimedean Normed Spaces

In this paper, some fixed point theorems for nonexpansive mappings in partially ordered spherically complete ultrametric spaces are proved. In addition, we investigate the existence of fixed points for nonexpansive mappings in partially ordered non-Archimedean normed spaces. Finally, we give some examples to discuss the assumptions and support our results.

متن کامل

A P-adic Approach to Local Analytic Dynamics: Analytic Flows and Analytic Maps Tangent to the Identity

In this note, we will consider the question of local equivalence of analytic functions which fix the origin and are tangent to the identity, as well as the question of flows of analytic vector fields. All mappings and equivalences are considered in the non-archimedean context e.g. all norms can be considered p-adic norms. We show that any two mappings f and g which are formally equivalent are a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2013